首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   36篇
  2022年   7篇
  2021年   6篇
  2020年   6篇
  2019年   9篇
  2018年   2篇
  2017年   9篇
  2016年   12篇
  2015年   17篇
  2014年   29篇
  2013年   27篇
  2012年   30篇
  2011年   31篇
  2010年   20篇
  2009年   19篇
  2008年   18篇
  2007年   19篇
  2006年   24篇
  2005年   12篇
  2004年   21篇
  2003年   14篇
  2002年   16篇
  2001年   3篇
  2000年   4篇
  1999年   6篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1973年   1篇
  1971年   4篇
排序方式: 共有403条查询结果,搜索用时 62 毫秒
11.
The enoyl acyl-carrier protein reductase (ENR) enzyme is harbored within the apicoplast of apicomplexan parasites providing a significant challenge for drug delivery, which may be overcome through the addition of transductive peptides, which facilitates crossing the apicoplast membranes. The binding site of triclosan, a potent ENR inhibitor, is occluded from the solvent making the attachment of these linkers challenging. Herein, we have produced 3 new triclosan analogs with bulky A- and B-ring motifs, which protrude into the solvent allowing for the future attachment of molecular transporters for delivery.  相似文献   
12.
13.
14.
15.
International Microbiology - Trichoderma species have been widely recognized as biofertilizer fungi for their ability to produce phytohormones and enhance plant growth. In our current study,...  相似文献   
16.
17.
Ectothermic animals exhibit two distinct kinds of plasticityin response to temperature: Thermal performance curves (TPCs),in which an individual's performance (e.g., growth rate) variesin response to current temperature; and developmental reactionnorms (DRNs), in which the trait value (e.g., adult body sizeor development time) of a genotype varies in response to developmentaltemperatures experienced over some time period during development.Here we explore patterns of genetic variation and selectionon TPCs and DRNs for insects in fluctuating thermal environments.First, we describe two statistical methods for partitioningtotal genetic variation into variation for overall size or performanceand variation in plasticity, and apply these methods to availabledatasets on DRNs and TPCs for insect growth and size. Our resultsindicate that for the datasets we considered, genetic variationin plasticity represents a larger proportion of the total geneticvariation in TPCs compared to DRNs, for the available datasets.Simulations suggest that estimates of the genetic variationin plasticity are strongly affected by the number and rangeof temperatures considered, and by the degree of nonlinearityin the TPC or DRN. Second, we review a recent analysis of fieldselection studies which indicates that directional selectionfavoring increased overall size is common in many systems—thatbigger is frequently fitter. Third, we use a recent theoreticalmodel to examine how selection on thermal performance curvesrelates to environmental temperatures during selection. Themodel predicts that if selection acts primarily on adult sizeor development time, then selection on thermal performance curvesfor larval growth or development rates is directly related tothe frequency distribution of temperatures experienced duringlarval development. Using data on caterpillar temperatures inthe field, we show that the strength of directional selectionon growth rate is predicted to be greater at the modal (mostfrequent) temperatures, not at the mean temperature or at temperaturesat which growth rate is maximized. Our results illustrate someof the differences in genetic architecture and patterns of selectionbetween thermal performance curves and developmental reactionnorms.  相似文献   
18.
The neuropeptide Y (NPY) receptor subtypes Y1 and Y5 are involved in the regulation of feeding and several other physiological functions in mammals. To increase our understanding of the origin and mechanisms of the complex NPY system, we report here the cloning and pharmacological characterization of receptors Y1 and Y5 in the first non-mammal, chicken (Gallus gallus). The receptors display 80-83% and 64-72% amino acid sequence identity, respectively, with their mammalian orthologues. The three endogenous ligands NPY, peptide YY (PYY) and pancreatic polypeptide (PP) have similar affinities as in mammals, i.e. NPY and PYY have subnanomolar affinity for both receptors whereas chicken PP bound with nanomolar affinity to Y5 but not to Y1. A notable difference to mammalian receptor subtypes is that the Y1 antagonist SR120819A does not bind chicken Y1, whereas BIBP3226 does. The Y5 antagonist CGP71863A binds to the chicken Y5 receptor. Anatomically, both Y1 and Y5 have high mRNA expression levels in the infundibular nucleus which is the homologous structure of the hypothalamic arcuate nucleus in mammals. These results suggest that some of the selective Y1 and Y5 antagonists developed in mammals can be used to study appetite regulation in chicken.  相似文献   
19.
The Xrcc2 and Rad51D/Rad51L3 proteins, which belong to the Rad51 paralogs, are required for homologous recombinational repair (HRR) in vertebrates. The Xrcc2 and Rad51D/Rad51L3 genes, whose products interact with each other, have essential roles in ensuring normal embryonic development. In the present study, we coexpressed the human Xrcc2 and Rad51D/Rad51L3 proteins (Xrcc2 and Rad51D, respectively) in Escherichia coli, and purified the Xrcc2*Rad51D complex to homogeneity. The Xrcc2 small middle dotRad51D complex catalyzed homologous pairing between single-stranded and double-stranded DNA, similar to the function of the Xrcc3*Rad51C complex, which is another complex of the Rad51 paralogs. An electron microscopic analysis showed that Xrcc2*Rad51D formed a multimeric ring structure in the absence of DNA. In the presence of ssDNA, Xrcc2*Rad51D formed a filamentous structure, which is commonly observed among the human homologous pairing proteins, Rad51, Rad52, and Xrcc3*Rad51C.  相似文献   
20.
Sun Y  Chen HM  Subudhi SK  Chen J  Koka R  Chen L  Fu YX 《Nature medicine》2002,8(12):1405-1413
Humans and mice deficient in Fas, a tumor necrosis factor (TNF)-receptor family member, cannot induce apoptosis of autoreactive cells, and consequently develop progressive lymphoproliferative disorders and lupus-like autoimmune diseases. Previous studies have shown that short-term administrations of agonistic monoclonal antibodies against CD137, another TNF-receptor family member, activate T cells and induce rejection of allografts and established tumors. Here we report that treatment with an agonistic monoclonal antibody to CD137 (2A) blocks lymphadenopathy and spontaneous autoimmune diseases in Fas-deficient MRL/lpr mice, ultimately leading to their prolonged survival. Notably, 2A treatment rapidly augments IFN-gamma production, and induces the depletion of autoreactive B cells and abnormal double-negative T cells, possibly by increasing their apoptosis through Fas- and TNF receptor-independent mechanisms. This study demonstrates that agonistic monoclonal antibodies specific for costimulatory molecules can be used as novel therapeutic agents to delete autoreactive lymphocytes and block autoimmune disease progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号